翻訳と辞書
Words near each other
・ Dimension (disambiguation)
・ Dimension (film)
・ Dimension (graph theory)
・ Dimension (metadata)
・ Dimension (shampoo)
・ Dimension (song)
・ Dimension (vector space)
・ Dimension 4
・ Dimension 5
・ Dimension 5 (album)
・ Dimension 5 (film)
・ Dimension Costeña
・ Dimension Data Holdings
・ Dimension Data Pro-Am
・ Dimension Films
Dimension function
・ Dimension Hatröss
・ Dimension Intrusion
・ Dimension Jump
・ Dimension Jump (convention)
・ Dimension Jump (Red Dwarf episode)
・ Dimension Mix
・ Dimension of an algebraic variety
・ Dimension of Miracles
・ Dimension Pictures (1970s company)
・ Dimension PSI
・ Dimension Records
・ Dimension stone
・ Dimension table
・ Dimension theorem for vector spaces


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dimension function : ウィキペディア英語版
Dimension function

In mathematics, the notion of an (exact) dimension function (also known as a gauge function) is a tool in the study of fractals and other subsets of metric spaces. Dimension functions are a generalisation of the simple "diameter to the dimension" power law used in the construction of ''s''-dimensional Hausdorff measure.
==Motivation: ''s''-dimensional Hausdorff measure==

(詳細はsubset ''E'' of ''X''. Given a number ''s'' ≥ 0, the ''s''-dimensional Hausdorff measure of ''E'', denoted ''μ''''s''(''E''), is defined by
:\mu^ (E) = \lim_ \mu_^ (E),
where
:\mu_^ (E) = \inf \left\ \mathrm (C_)^ \right| \mathrm (C_) \leq \delta, \bigcup_^ C_ \supseteq E \right\}.
''μ''''δ''''s''(''E'') can be thought of as an approximation to the "true" ''s''-dimensional area/volume of ''E'' given by calculating the minimal ''s''-dimensional area/volume of a covering of ''E'' by sets of diameter at most ''δ''.
As a function of increasing ''s'', ''μ''''s''(''E'') is non-increasing. In fact, for all values of ''s'', except possibly one, ''H''''s''(''E'') is either 0 or +∞; this exceptional value is called the Hausdorff dimension of ''E'', here denoted dimH(''E''). Intuitively speaking, ''μ''''s''(''E'') = +∞ for ''s'' < dimH(''E'') for the same reason as the 1-dimensional linear length of a 2-dimensional disc in the Euclidean plane is +∞; likewise, ''μ''''s''(''E'') = 0 for ''s'' > dimH(''E'') for the same reason as the 3-dimensional volume of a disc in the Euclidean plane is zero.
The idea of a dimension function is to use different functions of diameter than just diam(''C'')''s'' for some ''s'', and to look for the same property of the Hausdorff measure being finite and non-zero.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dimension function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.